XWH - 15 - 1 - 0664 TITLE : Development of a Novel Segmental Bone Defect

نویسنده

  • Matthew Bernards
چکیده

Resistance to nonspecific protein adsorption and the capability to provide targeted bioactive signals are essential qualities for implantable biomaterials. The development of materials that combine these multifunctional characteristics and tunable mechanical properties has been a target in the tissue engineering field over the last decade. This study is the first to demonstrate that polyampholyte hydrogels prepared with equimolar quantities of positively charged and negatively charged monomer subunits from multiple monomer compositions have great potential to address these needs. The hydrogels were synthesized with positively charged [2-(acryloyloxy)ethyl] trimethylammonium chloride and different monomer ratios of the negatively charged 2-carboxyethyl acrylate and 3sulfopropyl methacrylate monomers. The physical and chemical properties of the hydrogels were fully characterized, including swelling, hydration, mechanical strength, and chemical composition, and the fouling resistance of the hydrogels was demonstrated using enzyme-linked immunosorbent assays. Additionally, the capability of the hydrogels to facilitate protein conjugation via EDC/NHS conjugation chemistry was assessed. The results clearly demonstrate that the polyampholyte hydrogels have a range of tunable mechanical strength based on the monomer subunits, while maintaining their excellent nonfouling properties. Additionally, high levels of conjugated protein were achieved for all of the monomer combinations investigated. Therefore, the broadly applicable multifunctional properties of polyampholyte hydrogels and their tunable mechanical properties clearly demonstrate the potential of these materials for tissue engineering. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43985.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Zeolite and Zeolite/Collagen nanocomposite scaffolds on healing of segmental femur bone defect in rabbits

Objective- The present study was aimed to evaluate repair of a critical segmental defect of rabbit femur using the rabbit’s femoral defects repaired by Zeolite and Zeolite/Collagen scaffolds Design- Experimental Study Animals- Forty-five mature male New Zealand white rabbits Procedures- The animals were randomly divided into three groups of 15 animals each. In the first group...

متن کامل

AWARD NUMBER: W81XWH-13-1-0407 TITLE: Novel Therapy for Bone Regeneration in Large Segmental Defects PRINCIPAL INVESTIGATOR: Melissa Kacena CONTRACTING ORGANIZATION: INDIANA UNIVERSITY INDIANAPOLIS IN 46202-5130

Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shi...

متن کامل

AWARD NUMBER: W81XWH-13-1-0501 TITLE: Novel Therapy for Bone Regeneration in Large Segmental Defects PRINCIPAL INVESTIGATOR: Tien-Min Chu CONTRACTING ORGANIZATION: NDIANA UNIVERSITY INDIANAPOLIS IN 46202-5130

Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017